Portada » Ultimas Noticias » Una IA de Google predice la estructura e interacciones de todas las moléculas de la vida

Una IA de Google predice la estructura e interacciones de todas las moléculas de la vida

por La redacción
Getting your Trinity Audio player ready...

Crédito:
EFE
Fuente:
EFE

REDACCIÓN INTERNACIONAL.-Dentro de cada célula hay miles de millones de máquinas moleculares y entender su funcionamiento es clave para comprender y tratar enfermedades. La última versión de AlphaFold, un sistema de inteligencia artificial de Google, es capaz de predecir la estructura y las interacciones de ‘todas’ las moléculas de la vida.

Su descripción se publica en la revista Nature y, según sus responsables, AlphaFold 3 lleva «el mundo biológico a la alta definición». Permite a los científicos ver los sistemas celulares en toda su complejidad, a través de sus estructuras, las interacciones y modificaciones.

Se trata, según DeepMind, responsable de esta inteligencia artificial (IA) junto a Isomorphic Labs, de un «modelo revolucionario» que mejora los anteriores y que trabaja con una precisión sin precedentes.

Dentro de cada célula vegetal, animal y humana hay miles de millones de máquinas moleculares que están formadas por proteínas, ADN y otras moléculas, pero ninguna de ellas funciona por sí sola. Sólo viendo cómo interactúan entre sí, a través de millones de tipos de combinaciones, se puede empezar a entender realmente los procesos de la vida.

El nuevo modelo se basa en los fundamentos de AlphaFold 2, que en 2020 y los años siguientes supuso un ‘avance fundamental’ en la predicción de la estructura de las proteínas (en 2022 se publicaron las predicciones de la estructura tridimensional de casi todas las proteínas -200 millones- a partir de su secuencia de aminoácidos).

Millones de investigadores de todo el mundo han utilizado esa versión para hacer descubrimientos en áreas como las vacunas contra la malaria, los tratamientos contra el cáncer y el diseño de enzimas, señala un comunicado de Google DeepMind.

Ahora, las mejoras sustanciales introducidas en la arquitectura del aprendizaje profundo y el sistema de entrenamiento permiten predecir con mayor precisión la estructura de una amplia gama de sistemas biomoleculares en un marco unificado.

En el caso de las interacciones de las proteínas con otros tipos de moléculas, consigue una mejora de al menos el 50 % en comparación con los métodos de predicción existentes, y para algunas categorías importantes de interacción se ha duplicado la exactitud de predicción.

«AlphaFold 3 nos lleva más allá de las proteínas para abarcar un amplio espectro de biomoléculas. Este salto podría dar lugar a una ciencia más transformadora, desde el desarrollo de materiales biorrenovables y cultivos más resistentes hasta la aceleración del diseño de fármacos y la investigación genómica», agrega la nota.

También le puede interesar

El Demócrata Multimedia es una plataforma de análisis social y político, única en su género a nivel de República Dominicana y la región, inspirada en los valores de la libertad de expresión, la independencia y la credibilidad como ejes fundamentales de nuestro proyecto.

Boletín de noticias

Últimas Noticias